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Deep Inter Prediction with Error-Corrected Auto-Regressive

Network for Video Coding

YUZHANG HU, WENHAN YANG, JIAYING LIU, and ZONGMING GUO,

Wangxuan Institute of Computer Technology, Peking University

Modern codecs remove temporal redundancy of a video via inter prediction, i.e., searching previously coded

frames for similar blocks and storing motion vectors to save bit-rates. However, existing codecs adopt block-

level motion estimation, where a block is regressed by reference blocks linearly and is doomed to fail to

deal with non-linear motions. In this article, we generate virtual reference frames (VRFs) with previously

reconstructed frames via deep networks to offer an additional candidate, which is not constrained to linear

motion structure and further significantly improves coding efficiency. More specifically, we propose a novel

deep Auto-Regressive Moving-Average (ARMA) model, Error-Corrected Auto-Regressive Network (ECAR-

Net), equipped with the powers of the conventional statistic ARMA models and deep networks jointly for

reference frame prediction. Similar to conventional ARMA models, the ECAR-Net consists of two stages: Auto-

Regression (AR) stage and Error-Correction (EC) stage, where the first part predicts the signal at the current

time-step based on previously reconstructed frames, while the second one compensates for the output of the

AR stage to obtain finer details. Different from the statistic AR models only focusing on short-term temporal

dependency, the AR model of our ECAR-Net is further injected with the long-term dynamics mechanism,

where long temporal information is utilized to help predict motions more accurately. Furthermore, ECAR-Net

works in a configuration-adaptive way, i.e., using different dynamics and error definitions for the Low Delay

B and Random Access configurations, which helps improve the adaptivity and generality in diverse coding

scenarios. With the well-designed network, our method surpasses HEVC on average 5.0% and 6.6% BD-rate

saving for the luma component under the Low Delay B and Random Access configurations and also obtains

on average 1.54% BD-rate saving over VVC. Furthermore, ECAR-Net works in a configuration-adaptive way,

i.e., using different dynamics and error definitions for the Low Delay B and Random Access configurations,

which helps improve the adaptivity and generality in diverse coding scenarios.
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1 INTRODUCTION

Inter prediction is leveraged to squeeze out temporal redundancy among video frames in re-

cent video compression coding standards like H.264/AVC [1] and High Efficient Video Coding

(HEVC) [2]. In the stage of inter prediction, for a block that is to be coded (to-be-coded block),

the block-wise motion is searched and used to predict the current block based on reference blocks.

After that, only the block-level motion and the predicted residue need to be stored, which largely

reduces temporal redundancy and saves bit-rates. However, similar blocks can hardly be found

from the previously encoded reference frames after the motion compensation on the to-be-coded

block when complex motions exist. As a result, there remains a larger predicted residue after in-

ter prediction, which would significantly affect the coding efficiency. Some new techniques are

introduced in the Versatile Video Coding (VVC) [3] to further enhance the inter prediction.

For example, the affine motion compensated prediction is designed to model complex inter-frame

motions such as rotation by introducing affine transformation. Although coding efficiency is im-

proved to some extent, these techniques are hand-crafted and thus with limited capacities, lacking

the flexibility to model different kinds of complex motions.

Recently, deep learning has shown excellent modeling capacities in both high-level computer

vision tasks and low-level vision fields, including image restoration [4, 5], image interpolation

[6–8], and so on. Then naturally, deep learning techniques have also been introduced to improve

various modules of modern codecs, e.g., intra prediction [9–11], fractional interpolation [12, 13],

and in-loop filter [14]. Specifically, some methods have been proposed to predict a virtual frame

pixel-wise closer to the to-be-coded frame with previously reconstructed frames as an additional

reference frame for the inter prediction. For simplicity, following [15], we call the predicted frame

the Virtual Reference Frame (VRF). Some existing works have adopted different ways to gener-

ate VRFs. Zhao et al. [15] first applied the adaptive convolution-based frame rate up conversion

(FRUC) algorithm [16] to predict a VRF with two reconstructed frames. The basic FRUC algorithm

is further improved with more side information to guide the VRF prediction in successive works. In

[17], the temporal index of the input frame is also taken as the input to make the model deal with

different coding configurations. Then in [18], the Quality Parameter (QP) of the input frame is

introduced into the quality attention scheme. These two works make use of more extra guidance

information to achieve better prediction results, while the temporal perception range of the model

is limited, as the model only takes two adjacent frames as input. Laude et al. [19] explored to pre-

dict the VRF with more input frames, i.e., four frames in a progressive manner with the PredNet

proposed in [20]. However, the experiment results prove that the performance improvement is

limited by simply taking more frames as the input. Besides, some advanced network structures

like Laplacian Pyramid of Generative Adversarial Network [21] is used to predict the VRF in [22].

Although significant performance improvements have been achieved, these methods still have

the limitation from the perspective of model structure, temporal information perception, and con-

sideration of coding scenarios.

— The model capacity of existing works is limited. Some widely used network architectures

[16, 20, 21] are directly applied for the generation of the VRF. However, during the coding

process of a video sequence, the characteristics of the encoded frames may vary a lot, e.g.,
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the changing quality of the frames and the randomly accessed temporal order of frames.

These challenging characteristics call for a more powerful model for the generation process.

— Strong temporal consistency in the video sequence has not been fully investigated in existing

works. Most of the existing works only take two reconstructed frames as the input of the

prediction model. Without the perception for motions in a long time-span, the predicted

frame might not be desirable with blurred details and artifacts caused by the inaccurate

frame regression and improper fusion.

— Frame prediction methods are good at perceiving and utilizing motion information. How-

ever, they might neglect the spatial redundancy and nature image/video statistics. Especially

when coming across complex motions, the frame prediction results inevitably include visual

artifacts and distorted details. It is necessary to introduce another module/step to further re-

fine the prediction results via utilizing spatial redundancy and nature image/video statistics

to further improve the frame visual quality.

In this article, we aim at addressing the above-mentioned three issues. Specifically, we develop

an Error-Corrected Auto-Regressive Network (ECAR-Net), a combination of deep networks

and conventional statistical Auto-Regressive Moving-Average (ARMA) model for temporal

modeling. First, the generation of the VRF is modeled as a regression process with previously

reconstructed frames. There is a tradeoff between the regression accuracy and complexity when

choosing the number of the past steps for the regression window of the current frame. Taking more

input frames as the regression input can bring more temporal information, but pays for more mem-

ory and computational cost. We propose to capture long-term temporal dynamics of videos instead

of adopting a large regression window to facilitate motion modeling. Beyond using nearby frames,

the long-term temporal dynamics are introduced to offer the information that the input frames

do not include in the regression process. Second, as the motion is usually so complex and hard

to be predicted, the directly predicted frame inevitably includes distortions and visual artifacts.

Therefore, we propose to adopt an error correction (EC) module to further improve the quality of

the raw regression result with the guidance of an error map. Finally, different coding configurations

increase the complexity of VRF generation using a unified framework. Specifically, under the LDB

configuration, the coding order is totally in the temporal order, while under the RA configuration,

the coding order is disordered. Our model works in a configuration-adaptive way. We use the same

network structure but adopt different inputs as the long-term temporal dynamics and error map under

different coding configurations. In this way, our method is more general to deal with various coding

scenarios. Our contributions are summarized as follows:

— We combine the conventional statistic ARMA model and deep networks to develop the

ECAR-Net for VRF prediction. ECAR-Net works in a configuration-adaptive way for bet-

ter generality and is equipped with stronger capacity in describing motions and dynamics

among videos.

— We propose the novel way to model long-term temporal dynamics during the Auto-

Regression (AR) process. Complex motion patterns can be captured with just a fixed small

number of input frames while still perceiving the motion during a long time-span.

— We design an EC module under the guidance of an error map to restore the generated dis-

torted details of the AR result and further improve the quality of the final predicted VRF.

The rest of the article is organized as follows. In Section 2, we provide a brief review of re-

lated works. In Section 3, we introduce the methodology of our ECAR-Net and describe the imple-

mentation details. Experimental results are shown in Section 4. Finally, we make a conclusion in

Section 5.
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2 RELATED WORKS

2.1 Deep Learning-Based Video Temporal Modeling

Recently, deep learning is widely used for video temporal modeling to synthesize new frames with

temporally adjacent ones, known as frame interpolation and extrapolation. Motion patterns among

adjacent frames are estimated first in order to predict the motion between the new frames and adja-

cent frames. Many optical flow estimation methods [23–25] can describe pixel-level displacement

and are suitable for the motion estimation.

In [26], motion patterns are estimated followed with target frame synthesis. However, the gen-

eration quality of this method depends heavily on the accuracy of the motion estimation. Then in

[27], the target frames are synthesized directly by convolutions with adaptive kernels estimated

for each pixel. This method is further improved in [16] by making the adaptive kernels separable

in order to reduce the time and memory costs. In this way, explicit motion estimation is bypassed

so motion estimation is not the bottleneck of generation results with high quality.

Liu et al. [28] proposed to combine the motion-based and synthesis-based methods with deep

voxel flow. Pixels of existing frames are copied and feed-forwarded to the specific location accord-

ing to the estimated deep voxel flow and then fused to synthesize the target frame through pixel-

level weighted summation with the estimated mask. Reda et al. [29] proposed to use vector-based

method to deal with large-scale motion while use kernel-based method to deal with small-scale

motion. In this way, all kinds of motions can be estimated and handled effectively to generate

target frames with clear and sharp details.

2.2 Deep Learning-Based Video Coding

With the strong non-linear mapping capacity, many researchers explore to integrate deep learning

techniques into the traditional video codecs to improve the efficiency of both specific modules and

whole video coding architecture. Some works try to improve the quality of the reconstructed videos

with less storage costs while others make efforts to accelerate the coding speed.

Intra prediction is designed to remove spatial redundancy of frames. Li et al. [30] proposed to use

the fully connected network to predict the to-be-coded coding blocks to replace the existing linear

predicting algorithm in the traditional video codecs. Hu et al. [10] proposed to use the recurrent

neural network which has a stronger mapping capacity for intra prediction and further improved

the efficiency of intra prediction.

Image restoration with deep learning has also been studied such as deblocking [31], super res-

olution [32], and significant gain has been achieved. In video codecs, loop filter is the module to

suppress the blocking artifacts caused by coding process. Therefore, many methods are proposed

to improve the existing loop filter modules with neural networks. Kang et al. [33] proposed a multi-

scale convolution neural network to perform loop filter and achieved significant gains over HEVC.

Jia et al. [34] took the context into consideration and designed a context-aware neural network to

make the model adaptive to the to-be-filtered region. The Progressive Rethinking Block (PRB)

proposed in [14] makes use of the long-term dependency between subsequent blocks of the neu-

ral network as well as the side information of coding partition tree. Therefore, more gains are

obtained.

The inter prediction module is also enhanced from many aspects. In [13], CNNs are made use

of to generate subpixels with existing pixels during the process of motion compensation to fa-

cilitate the sub pixel-level motion description. Wang et al. [35] refined the raw inter prediction

result with CNNs to obtain a better one. Zhao et al. [36] firstly applied the interpolation network

to directly generate the reconstructed blocks rather than perform the existing inter prediction

under the RA configuration. Then in [18], a Multi-scale Quality Attentive Factorized Kernel

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 33. Publication date: January 2023.



Deep Inter Prediction with ECAR-Net for Video Coding 33:5

Convolutional Neural Network (MQ-FKCNN) is proposed for the generation of VRFs. Multi-

domain hierarchical constraints in spatial, frequency, and quality domains are introduced to reg-

ularize the training process. For the image extrapolation, Laude et al. [19] used the PredNet pro-

posed in [20] with long-short term memory (LSTM) [37] to predict future frames under the

LDB configuration. The Laplacian Pyramid of Generative Adversarial Network proposed in [21] is

also introduced to the video codecs in [22] for the generation of VRFs. Huo et al. [38] proposed to

align the reference frames before the generation process. Choi et al. [17] made use of the temporal

index as side information to enable the model to predict the to-be-coded frame under different cod-

ing configurations simultaneously. These works either apply existing frame generation networks

directly, which are not fully optimized for coding scenarios or do not make full use of temporal

redundancy for the frame generation process, which limits their capacity to improve efficiency of

video codecs. In our work, we take coding scenarios into consideration and design an ECAR-Net

to generate high quality VRFs under different coding configurations. Besides, we also focus on

making full use of temporal redundancy to obtain more accurate generation results fully captur-

ing long-term dynamics. The superiority of our proposed method in temporal modeling and inter

prediction over existing methods is shown in the experiment part.

3 ERROR-CORRECTED AUTO-REGRESSIVE NETWORK FOR INTER PREDICTION

In this section, we first describe the statistical ARMA Model and our improved version for the

video frame sequence regression. Then, we describe each module of our model under different

coding configurations in detail. At last, we integrate the proposed model into video codecs and

describe the implementation details of our method.

3.1 Auto-Regressive Moving-Average Model

The ARMA model is one of the most widely used statistical models to describe time-series data,

which is also used in [5–7, 39, 40] to tackle some computer vision tasks. It is the combination of

the AR model and the Moving-Average (MA) model.

The AR model predicts the value at the current time-step with the observations of previous

time-steps as follows:

Ĩt =

p∑
i=1

αi · It−i , (1)

where {It |t = 1, . . . ,T } is a time-series and Ĩt is the predicted AR result of the time step t . αi is

the AR coefficients denoting what percentage of the current regression target can be explained by

previous sampled values. p stands for the order of the model, i.e., the length of the time steps for

predicting It . The MA model, on the other hand, plays the role to further improve the accuracy of

the regression result of the AR model with the past regression errors as follows:

Zt =

p∑
i=1

βi · Rt−i , (2)

where Rt−i is the regression error between the regression result ˜It−i and the real data It−i . These

regression errors are propagated and accumulated by the MA model to obtain the MA item denoted

as Zt . Finally, the regression result Ĩt is corrected by the MA item Zt to obtain the output of the

whole ARMA model Ît in a residual learning way as follows:

Ît = Ĩt + Zt . (3)
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Fig. 1. Architecture of the ECAR-Net. The network uses an auto-encoder to extract features from input

frames. The AR coefficients are generated based on the combination of short-term temporal redundancy γt

and long-term temporal dynamics εt , where the quality attention maps are injected for better prediction

quality. The raw regression result˜It is further enhanced with the error map Et to obtained the corrected Ît
with better quality, which is fed into the video codecs as the virtual reference frame to facilitate the inter

prediction.

3.2 Error-Corrected Auto-Regressive Netwrok

Inspired by the ARMA model, we connect the video frames in an AR way for VRF generation. We

first analyze the issue of directly applying ARMA model to VRF generation and then introduce our

improved version, called ECAR-Net as shown in Figure 1.

First, describing the relationship of the continuous frames with a constant αi will lead to in-

accurate regression results. In order to solve this problem, it will be better if αi is dynamically

dependent on the current temporal context. Therefore, we regard αi as a function αi (·). It is nat-

ural to make use of the adjacent p frames for the calculation of αi (·). However, this will lead to

the loss of the temporal information out of the adjacent p frames. In order to solve this problem,

we propose the novel long-term temporal dynamics injection scheme, which contains temporal

information out of the input p frames and thus can trace the motion patterns of a larger time-span

and will be described in detail later. Moreover, the motion and content information of different

reconstructed frames might differ a lot so the quality attention modeling should be embedded into

αt (·), which allocates larger linear blend weights to the regions owning more information for bet-

ter motion and content quality of the target frame. Based on the above analysis, we split at (·) into

Kt (·) and Mt (·), where the former denotes the regression coefficients generated based on both

the short-term redundancy and long-term dynamics, and the latter denotes the quality attention

map. Then, the improved AR coefficients are developed as follows:

ai (εt ,γt ) = {Ki (εt ,γt ),Mi (γt )}, (4)

where γt stands for short-term temporal redundancy extracted from the previous input frames

{It−i } and εt stands for the long-term temporal dynamics. Then, the improved AR model is devel-

oped as follows:

Ĩt =

p∑
i=1

It−i ⊗ Ki (εt ,γt ) � Mi (γt ), (5)

where ⊗ denotes the adaptive convolution and � is the pixel-wise multiplication.

Second, the regression result Ĩt can be enhanced by better utilizing spatial redundancy and na-

ture image/video statistics, namely, further correction or refinement. In a conventional MA model,

it is reflected in Equation (2) that, the AR result is further corrected with p previous regression

errors, which results in a heavy burden of storage and calculation. In fact, the regression errors

of the frames far away from the current time step contribute little to the correction process of the
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Fig. 2. Pipeline to connect all the sub-modules of the ECAR-Net. The AR model in Equation (5) generates

the regression result ˜It , which is further refined with the EC Module under the guidance of the Error Map

Et to generate the final VRF Ît . Ît is then utilized to enhance the inter prediction of video codecs. The

configuration-adaptive long-term dynamics εt and error map Et are calculated by different sub-modules,

which will be described in detail in the following sections.

current frame due to a large time interval. In order to address this issue, we propose an EC module

to further enhance the AR regression result with only the nearest prediction error information.

This module takes an error map Et that reflects the regressing error under the given temporal

context of the t th frame, together with Ĩt to calculate a correction term, which is added to Ĩt to

generate the final output of our model Ît as follows:

Ît = Ĩt + fEC ([Et , Ĩt ]), (6)

where fEC (·) denotes the forwarding process of the EC module and [·] denotes the concatenation

operation. Ît is then fed into the video codecs as the VRF to facilitate the coding process of t th
frame.

This is the basic framework of our ECAR-Net, and the overall pipeline to generate the VRF is

shown in Figure 2. While the physical meanings of the long-term dynamics εt and error map Et

are configuration-adaptive to adapt to different coding scenarios, which will be described in the

following sections.

3.3 ECAR-Net for LDB Configuration

When coding under the LDB configuration, the frame with a smaller POC is coded first, which

means the coding order is totally in the temporal order. As a result, it becomes more tractable to

capture the successive long-term motion. We design ECAR-Net for LDB configuration from two

aspects:

First, we capture and update the long-term temporal dynamics iteratively. The long-term dynam-

ics are regarded as a kind of memory and are initialized to zero and updated after each prediction,

while the updated one is used for the next prediction as shown in Figure 4. The key role of this

consecutive propagation process is the Dynamics Updating module as shown in Figure 3, which

consists of a Convolution LSTM [41] subnet and εt is the hidden state of the ConvLSTM. The t th
predicted frame of our ECAR-Net Ît is fed into the video codecs as a reference frame. After the

video codecs finish coding the t th frame with the reconstructed frame denoted as It , the residue

between Ît and It is calculated. This residue denoted as Rt reflects the prediction error at the time
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Fig. 3. The Dynamic Updating module under the LDB configuration. The prediction result of our model Ît
is fed into the video codecs as a reference frame for the tth frame. Then, the residues between Ît and the

reconstructed tth frame It are fed into the ConvLSTM with hidden state εt . After that, the hidden state is

updated to εt+1, which is the long-term dynamics of the next iteration.

Fig. 4. The coding process under the LDB configuration. Before coding the tth frame, the previous frames

It−1 and It−2, together with the long-term dynamics at the current timestep εt , are taken as the input to

regress the current frame. The output Ît is used as the VRF to facilitate the coding of the current frame. The

long-term dynamics εt are then be updated and propagated to the next timestep εt+1. Due to the lack of

input frames, this process is not performed for the first two frames so the current frame index of the first

row is 3.

step t . Then current long-term temporal dynamics εt are updated to εt+1 with Rt as follows:

εt+1 = fLST M (Rt , εt ), (7)

where fLST M (·) is the forwarding process of the ConvLSTM. Then, the updated εt+1 is the long-

term temporal dynamics to predict the (i+1)-th frame. The long-term dynamics will be updated and

propagated as described above until all frames are coded. In this way, we do not have to introduce

more input frames at each timestep but have already succeeded to capture motion information of

a long time-span during the AR process.

Second, we make use of the past prediction error to further enhance the AR result ˜It in the EC

module. As discussed in Section 3.2, the traditional MA model has to take a large number of pre-

vious prediction errors as input, which increases the calculation and storage burden. Considering

that the most nearby adjacent frames are usually most correlated to the current frame, we use the

prediction error of the last predicted frame Rt−1 as the error map Et to achieve the balance between

correction effectiveness and complexity.
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Fig. 5. The Error Estimation module under the RA configuration. The anchor frame Ia is first aligned to the

regression result ˜It with the optical flow estimated by the SpyNet. The residue is viewed as the error map

Et to guide the EC process.

3.4 ECAR-Net for RA Configuration

When coding under the RA configuration, all frames of a video are divided into different group

of pictures (GOP). The first frame of a GOP is the key frame and others are non-key frames.

During the coding process, the frames of an earlier GOP are coded before the ones of a later GOP.

The frames of the same GOP are further divided into different coding layers. It is the depth of

the coding layer of each frame that decides its coding order and the frames of a deeper layer are

coded later than the ones of a shallower layer. This coding scenarios result in issues when applying

the ECAR-Net for LDB configuration directly to the RA configuration, which incurs the further

adjustment from two aspects:

First, for the AR process, we use different input frames and change the definition of the long-

term temporal dynamics. It is possible that the t th frame has been coded before some frames with

POCs smaller than t as they might belong to a deeper coding layer, so it is not feasible to always

use the reconstructed frames with smaller POCs to predict the current frame. However, the frames

of a shallower coding layer have been coded before the current frame due to the hierarchy coding

structure, which can be taken for the VRF generation in the frame interpolation manner like MQ-

FKCNN [18]. Specifically, the input frames It−1 and It−2 in Figure 1 are replaced by It−k and It+k ,

which are in the shallower coding layers. k is the temporal interval between the input frames and

the current to-be-coded frame, which is formulated as follows:

k = 2τ (It ), (8)

where τ (It ) stands for the difference between the coding depth of It and the maximum coding

depth.

Besides, the iteratively updated long-term temporal dynamics under the LDB configuration can-

not be applied under the RA configuration due to the coding order issue, so we design a flow-based

scheme to achieve the goal of long-term motion modeling. First, we introduce an anchor frame Ia ,

which is also previously coded and temporally farther from the to-be-coded frame than the input

frames It−k and It+k . Note that many candidate frames can be chosen as the anchor frame, which

will be discussed later. Then, we use the SpyNet [42] to estimate the optical flow from Ia to It−k and

It+k , denoted as Ot−k and Ot+k . The concatenation of Ot−k and Ot+k is viewed as the long-term

temporal dynamics εt under the RA configuration to obtain the AR result ˜It together with It−k and

It+k as shown in Figure 1.

Similarly, we further enhance ˜It with the EC module. The error map Et is re-defined and cal-

culated with an Error Estimation module as shown in Figure 5 for the RA configuration. This
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Table 1. Intermediate Feature Dimensions of Feature Extraction Module

Layer C1 C2 C3 C4 C5 DC5 DC4 DC3 DC2 DC1

Size H
2 ,W

2
H
4 ,W

4
H
8 ,W

8
H
16 ,W

16
H
32 ,W

32
H
16 ,W

16
H
8 ,W

8
H
4 ,W

4
H
2 ,W

2 H ,W

Channel 32 64 128 256 512 512 256 128 64 32

estimation process can be formulated as follows:

Et = ˜It − fwarp (Ia ,Ot ), (9)

where Ot denotes the optical flow between ˜It and Ia estimated by the SpyNet. fwarp (·) denotes

the warping operation. By warping Ia to ˜It , the pixels of these two images are well aligned. Some

regions in ˜It might come across detail loss and visual artifacts due to inaccurate regression. In that

case, those regions in Et have large values to reveal the regression errors, which further guides the

EC process. Some visualization will be provided in the experiment part to prove the effectiveness

of the EC process under the guidance of the Error Estimation module. After calculating Et , the

final output Ît is obtained as shown in Equation (6) with the EC Module, which is fed into video

codecs as an VRF to facilitate the coding process.

3.5 Architecture of the Network

Figure 1 shows the overall architecture of our network, which consists of three main modules.

Feature Extraction Module. We apply an encoder-decoder structure to extract short-term

redundancy γt from the two input frames as shown in Figure 1. We introduce continuous down-

sampling and up-sampling operations for larger receptive fields and skip connections from the

encoder to the decoder to bypass information at different levels to make this module more aware

of subtle motions. The extracted feature γt encodes main spatial and temporal structures of tem-

porally nearby adjacent frames. Table 1 shows the detailed output shape of each layer, where H
and W denote the height and width of the input image. Two input images are concatenated and

then fed into the network.Ci and stand for the convolution block of the encoder and DCi is the de-

convolution block of the decoder, which consist of three convolution layers with 3 × 3 kernel size

followed by Rectified Linear Unit (ReLU) activation function. The resolution is downsampled

with an average pooling by Ci and upsampled with a bilinear interpolation by DCi .

Auto Regression Module. The AR Module takes both the long-term dynamics εt and the ex-

tracted feature γt as the input to regress the current frame. It contains two submodules: Coeffi-

cient Generation (CG) module and Attention Generation (AG) module. The structures of the

two modules are described in detail in Figure 6. In the CG module, γt and εt are concatenated to

merge the short-term and long-term temporal information to generate the regression coefficients.

In the AG module, the attention map is calculated with the short-term temporal redundancy γt ,

followed by the tanh activation function to constrain the data range to [−1, 1]. The subsequent

summation and multiplication with constant coefficients make the output attention maps Mt−1

and Mt−2 sum up to an all-one map.

Error Correction Module. This module plays the role to improve the quality of the AR regres-

sion result under the guidance of the error map Et . We use the MIRNet [43], which achieves satis-

factory performance in image enhancement as its basic structure. The original network structure

only takes to-be-enhanced images as input of three channels, while we modify the first network

layer to accept input of six channels, including the AR regression result and the error map. The

channel number of the intermediate features is set to 32, which is half of the original configuration,

to further decrease the calculation burden while still achieving significant performance.
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Fig. 6. Architecture of the CG module and AG module. For the Coefficient Generation module, both the

short-term temporal redundancy γt and long-term temporal dynamics ϵt are taken as inputs to generate the

regression coefficients. In this way, the temporal information of a long time-span can be traced with only a

samll number of input frames. For the Attention Generation module, the attention map is generated with the

short-term temporal redundancy γt . The tanh function is used to constrain the data range of the attention

map. The following summation and multiplication with constant coefficients make the summation of Mt−2

and Mt−1 equal to an all-one map.

These three modules make up our final model. Under the architecture details described above,

the number of parameters is 249.6 M, which takes 95.3 MB of disk storage. For an input with a size

of 128 × 128, the number of the floating point operations during the network inference stage is

9.79 G. More analysis on computational complexity is provided in the experimental section.

3.6 Integration Into HEVC

Encoding Stage: There are two reference frame lists denoted as List0 and List1 where previous

encoded frames are placed as reference frames under the LDB and RA configurations. Before the

encoding of a to-be-coded frame, the corresponding input frames of our model are read from

the reference frame lists, and fed into ECAR-Net to generate the VRF Ît . Then, the farthest reference

frame from the to-be-coded frame in each reference frame list is replaced with Ît to begin the

encoding process. When the encoding process ends, Ît is removed from the reference frame list

and the previously replaced reference frame is put back to the reference frame list, which means

the reference frame list is restored to the original state.

Decoding Stage: The overall process for VRF generation is consistent with the one on the

encoding side. Before the decoding of a frame, the reference frame list is filled with decoded frames.

The VRF will be generated with the input frames, which are the same as the ones used on the

encoding side and then replace the farthest reference frame in the reference frame list to begin the

decoding process. When the decoding process ends, the reference frame list is restored in the way

same as the encoding side.

The key target on the decoding side is to make sure that the same VRF as the one on the encoding

side should be provided. As described above, the VRF only exists in the reference frame list when

the encoding process is ongoing and will be removed by the previously replaced reference frame

to restore List0 and List1 to the original state when the encoding process ends. In this way, the

state of List0 and List1 on the decoding side is the same as the one on the encoding stage. Thus, the

input frames fed into our model during the decoding stage is the same as the ones in the encoding

stage, which means the generated VRFs in the encoding stage and the decoding stage are also the

same to achieve the consistency of VRFs.

Integration into VVC: The overall implementation details are the same with HEVC. However,

for the RA configuration, we only generate a VRF for the frame in the deepest coding depth. This
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is because the interval of the input frames is larger for the frames in a shallower coding depth.

As a result, the generated VRF is of lower quality. We find that the generated VRF with the input

frames of a larger interval brings in little improvement to the coding performance of VVC, so we

choose only to generate VRFs for the frame in the deepest coding depth.

Other Details: Under the LDB configuration, the generated frame Ît is kept until this frame has

been encoded and then the generation residue Rt is calculated to update the hidden state of the

ConvLSTM module. Under the RA configuration, for most frames, there are two forward reference

frames in List0 and two backward reference frames in List1. We choose the frame of each list that

is closer to the to-be-coded frame as the input frame of ECAR-Net. Due to the hierarchical coding

structure, the two chosen frames take the to-be-coded frame as the center of symmetry, so we

denote these two frames as It−k and It+k . As for the selection strategy of the anchor frame, there

are many possible ways. In our implementation, we design a two-candidates selection strategy as

follows:

Ia =

{
It−2k , i f It−2k is coded,

Ikey , else .
(10)

In this strategy, It−2k is chosen as the anchor if it has been coded. Else we directly use the key

frame of the current GOP as the anchor frame. We also explore other strategies in the experiment

part and find that this strategy can bring in a good performance so we finally choose it.

3.7 Training Details

3.7.1 Training Data and Configuration. We choose the Vimeo-90K dataset [44] as our training

data. The dataset has 89,800 clips with a resolution of 448 × 256. Each clip has seven consecutive

frames. We use 87,902 clips as the training data and the rest as the validation data. In order to

simulate the quality degradation due to quantization, we compress all the data with HEVC to

simulate the quality degradation caused by lossy compression, and QP values range from 1 to 51.

For the frames of each clip, the degraded frames are denoted as I1 to I7, while the original frames

denoted as I 1 to I 7 are used as the ground truth. Note that in this section, It stands for the t th

frame in each 7-frame clip. During the training stage, every image is randomly cropped into a

128 × 128 patch while randomly flipped both horizontally and vertically for data augmentation.

The network is implemented in Pytorch and AdaMax [45] is used as the optimizer with β1 = 0.9,

β2 = 0.999. The batch size is set to 16 and the learning rate is firstly set to 10−3 while turned down

gradually until convergence. We choose the sum of absolute transformed difference (SATD)

loss function proposed in [10, 18] between the generation result and the ground truth as the loss

function. The training process consists of two stages. In the first stage, we only train the Feature

Extraction Module and the AR Module with the SATD loss as follows:

L1 = SATD (Ĩt , I t ), (11)

where Ĩt is the output of the AR Module and I t is the corresponding Ground Truth. After the first

stage, the Feature Extraction Module and the AR Module have the ability to generate reasonable

VRF. In the second stage, we add the EC Module to correct Ĩt to obtain the final VRF Ît of our full

model. We introduce another SATD loss function for the optimization of the EC Module as follows:

L2 = SATD (Ît , I t ). (12)

The whole network is jointly trained with the total loss function as follows:

Ltotal = L1 + λL2, (13)

where λ is the weight to balance two items, which is set to 0.5 in our implementation. For the

optical estimation network SpyNet, we directly use the pretrained weights provided by the author
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and the weights are fixed during the training stage because satisfactory estimation results have al-

ready been obtained by SpyNet with the pretrained weights. While for MIRNet, which is originally

designed for image enhancement tasks like image denoising, is re-trained in the second training

stage described above to make it capable for the goal of VRF correction.

3.7.2 Training Model for LDB Configuration. In the coding process, only the reconstructed

frames instead of the lossless frames are available, which will be used for calculating the generated

residues. In order to simulate the quality degradation of the reconstructed frames, in the training

stage, we calculate the generated residues with the degraded frames rather than the ground truth

to make the training process closer to the real coding process. For each clip, we generate five con-

secutive results Î3–Î7. The generation residues, denoted by R3–R7, are used to update the memory

according to the way described above.

3.7.3 Training Model for RA Configuration. Different from the training method for LDB con-

figuration, we design a random-interval training scheme for RA configuration. For each clip, we

randomly select It−1 and It+1 as the input to predict I t , where 2 <= (t ±1) <= 7. I1 is chosen as the

anchor frame. Training our model with different t can make it adapt to different anchor frames.

4 EXPERIMENTAL RESULTS

4.1 Overall Performance

We test the proposed method on HEVC reference software HM-16.20 with the common test con-

ditions [46]. The QP values are set to 22, 27, 32, and 37 but only one model is trained for all QPs.

BD-rate [47] is chosen to measure the rate-distortion. Table 2 shows the overall performance of

our proposed method for classes A–E. Our method has obtained on average 5.0% and 6.6% BD-rate

saving under LDB and RA configuration, respectively. For the testing sequence BQSquare, up to

15.9% BD-rate saving can be obtained for the luma component under the RA configuration. For

further verification, we show some rate-distortion curves of four test sequences in Figure 7.

When coding under the RA configuration, the GOP size can be set to different values. In order to

prove the generality of our method, we further test our method under the RA configuration with

a GOP size of 8. As shown in Table 3, significant gains can still be achieved with our method.

4.2 Comparison with Existing Methods

We compare our ECAR-Net with state-of-the-art methods under the LDB and RA configurations

to show the superiority of our model.

For the LDB configuration, the Video Coding oriented LAplacian Pyramid of Genera-

tive Adversarial Networks (VC-LAPGAN) [22] and the Deep Frame Prediction (DFP) frame-

work [17] are compared. VC-LAPGAN introduces an existing video prediction model for the gen-

eration of VRFs. DFP uses adaptive convolutions to generate the virtual frame. But only the two

closest reference frames are taken as input, while the temporal information beyond the input is not

taken into consideration, which makes it fail to model the long-term dynamics. As Table 4 shows,

our method outperforms VC-LAPGAN and DFP on all classes with 2.8% and 2.2% more BD-rate

reduction obtained, respectively.

For the RA configuration, the DFP and MQ-FKCNN [18] are compared with our method. MQ-

FKCNN improves the interpolation network proposed in [16] by introducing multi-domain hier-

archical constraints. However, it also ignores the long-term motion modeling. As Table 5 shows,

our method outperforms DFP and MQ-FKCNN on all classes with 4.0% and 2.2% more BD-rate

reduction, respectively.
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Table 2. BD-rate Reduction of the Proposed Method Compared to HEVC

Class Sequence
LDB RA

Y U V Y U V

Class A

Traffic - - - –7.0% –10.1% –13.0%

PeopleOnStreet - - - –11.4% –24.2% –18.5%

Nebuta - - - –3.2% –10.1% –1.0%

SteamLocomotive - - - –5.6% –1.7% 5.8%

Average - - - –6.8% –11.5% –6.7%

Class B

Kimono –5.4% –14.8% –5.4% –5.1% –15.4% –7.3%

BQTerrace –2.1% –13.3% –13.7% –3.4% –14.8% –10.6%

BasketballDrive –2.0% –8.7% –10.1% –3.4% –11.2% –12.5%

ParkScene –3.2% –13.3% –6.8% –5.4% –14.9% –7.1%

Cactus –7.1% –19.4% –12.1% –6.8% –14.5% –10.6%

Average –4.0% –13.9% –9.6% –4.8% –14.2% –9.6%

Class C

BasketballDrill –3.2% –20.8% –20.3% –4.8% –17.6% –20.5%

BQMall –6.4% –15.3% –16.1% –8.8% –15.1% –16.9%

PartyScene –4.4% –12.7% –15.9% –7.0% –12.7% –16.6%

RaceHorsesC –0.7% –2.7% –3.9% –2.2% –6.5% –8.6%

Average –3.7% –12.9% –14.1% –5.7% –13.0% –15.6%

Class D

BasketballPass –5.8% –17.5% –15.7% –8.8% –21.5% –21.8%

BlowingBubbles –4.6% –11.8% –15.5% –7.6% –10.3% –15.6%

BQSquare –6.3% –6.1% –17.7% –15.9% –6.4% –14.4%

RaceHorses –1.6% –8.6% –10.0% –5.6% –15.2% –17.8%

Average –4.6% –11.0% –14.7% –9.5% –13.3% –17.4%

Class E

FourPeople –12.1% –11.8% –5.7% - - -

Johnny –6.4% 1.8% –0.9% - - -

KristenAndSara –8.7% –6.4% –4.1% - - -

Average –9.1% –5.4% –3.5% - - -

All Sequences Overall –5.0% –11.3% –10.9% –6.6% –13.1% –12.2%

4.3 Computational Complexity

The computational complexity under the RA configuration of the proposed method is shown in

Table 6. The network forwarding is performed with a GTX 1080Ti GPU. The overall encoding time

complexity is 184% and decoding time complexity is 7,801% compared with HEVC. We further com-

pared our method with MQ-FKCNN [18] in the computational complexity. As shown in Table 6,

our method takes less time, especially at the decoding end which is more critical for practical appli-

cations. In the future, our method can be further optimized with network acceleration techniques

like model prunning and hardware acceleration.

First, we compare our method with the end-to-end DNN-based video compression method

DVC [49] in terms of the BD-Rate Reduction and Relative Complexity of the decoder side simul-

taneously. As Figure 8(b) shows, the relative complexity of our method is comparable with DVC,

while our method achieves more BD-Rate saving on Class B. Note that only the computational

complexity of DVC on Class B is available so the comparison results on other classes are not

shown.

Furthermore, we compare with two methods, which also explore to generate VRFs to enhance

the inter prediction. Figure 8(a) shows the average BD-Rate Reduction and Relative Complexity

results on all classes. It can be observed that our method achieves the highest performance with
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Fig. 7. R–D curves of the test sequences BasketballPass, BQMall, FourPeople, and KristenAndSara for the luma

component under the LDB configuration.

Table 3. BD-rate Reduciton under the

RA Configuration with a GOP Size of 8

Class Y U V

Class A −5.9% –17.3% –5.6%

Class B –4.7% –12.7% –7.7%

Class C –5.6% –11.5% –14.1%

Class D –9.4% –11.6% –14.4%

All Sequences –6.3% –13.2% –10.3%

the lowest relative complexity. Besides, the author of MQ-FKCNN provides the detailed Relative

Complexity of each class. As Figure 8(b) shows, our method still achieves higher performance with

lower relative complexity in every class.

4.4 Comparison with VVC

We integrate ECAR-Net into the recent VVC reference software VTM (version 15.0) to evaluate

the coding efficiency of our method following the VVC common test condition under the RA con-

figuration. The QP values are set to 22, 27, 32, and 37. We use the standard coding configurations

provided by the VTM reference software. Under these configurations, the advanced tools in VVC

for inter-prediction like the Affine Motion Compensated Prediction and the Bi-Directional Optical
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Table 4. BD-rate Reduction Comparison between Existing Methods and ECAR-Net

under the LDB Configuration

Class VC-LAPGAN [22] DFP [17] MAAR-Net [48] Ours

Class B –2.7% –2.1% –3.1% –4.0%

Class C –1.3% –2.2% –2.6% –3.7%

Class D –1.4% –2.2% –3.2% –4.6%

Class E –3.4% –5.8% –8.2% –9.1%

All Sequences –2.2% –2.8% –4.0% –5.0%

The best results are highlighted in bold.

Table 5. BD-rate Reduction Comparison between Existing Methods and

ECAR-Net under the RA Configuration

Class DFP [17] MQ-FKCNN [18] Ours

Class A –3.3% –4.2% –6.8%

Class B –1.8% –3.4% –4.8%

Class C –2.7% –4.2% –5.7%

Class D –1.7% –6.1% –9.5%

All Sequences –2.6% –4.4% –6.6%

The best results are highlighted in bold.

Table 6. Computational Complexity of the

Proposed Method and MQ-FKCNN [18]

Class
MQ-FKCNN [18] Ours

Enc (%) Dec (%) Enc (%) Dec (%)

Class A 184% 3,797% 172% 3,550%

Class B 180% 7,002% 177% 4,865%

Class C 232% 26,820% 183% 9,745%

Class D 402% 96,649% 206% 24,768%

All 232% 15,422% 184% 7,801%

Fig. 8. BD-Rate Reduction and Relative Complexity of different methods.

Flow are activated. As Table 7 shows, our method achieves on average 1.54%, 3.67%, and 4.12%

BD-rate reduction on Y, U, and V, respectively.

We further compare the BD-rate reduction with existing methods to prove the superiority of

our method. We choose MQ-FKCNN as the compared method as most existing methods do not

provide the BD-rate reduction result anchored on VVC. MQ-FKCNN is implemented on VTM 3.0.
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Table 7. BD-rate Reduction of the

Proposed Method Anchored on VTM-15.0

Class
BD-Rate Reduction

Y U V

Class A1 –0.74% –1.85% –2.35%

Class A2 –0.70% –3.23% –2.52%

Class B –0.81% –2.88% –3.33%

Class C –2.13% –4.76% –4.85%

Class D –3.08% –5.24% –6.90%

All –1.54% –3.67% –4.12%

Table 8. BD-rate Reduction Comparison with MQ-FKCNN Anchored on VTM-3.0

Class
MQ-FKCNN [18] Ours

Y U V Y U V

Class A1 –0.17% –0.89% –1.10% –1.01% –2.30% –4.04%

Class A2 –0.59% –2.71% –2.31% –0.97% –7.02% –5.20%

Class B –0.31% –1.79% –1.69% –1.02% –6.24% –6.17%

Class C –2.16% –3.70% –3.64 % –2.23% –5.39% –5.31%

Class D –3.08% –4.62% –5.03% –3.30% –5.48% –7.23%

All –1.30% –2.79% –2.81% –1.74% –5.40% –5.72%

Table 9. Ablation Study under the LDB Configuration

Class w/o EC w/o εt ECAR-Net

Class B –2.8% –3.8% –4.0%

Class C –2.8% –3.4% –3.7%

Class D –2.9% –3.8% –4.6%

Class E –5.6% –8.9% –9.1%

All –3.4% –4.7% –5.0%

Table 10. Ablation Study under the RA Configuration

Class w/o EC w/o εt ECAR-Net

Class A –5.2% –6.2% –6.8%

Class B –3.9% –3.9% –4.8%

Class C –4.3% –4.6% –5.7%

Class D –6.0% –7.3% –9.5%

All –4.8% –5.4% –6.6%

For a fair comparison, we also implement our method on VTM 3.0. As Table 8 shows, our method

outperforms MQ-FKCNN on all classes with 0.44%, 2.61%, and 2.91% more BD-rate reduction on Y,

U, and V, respectively.

4.5 Ablation Study

4.5.1 Verification of the EC Module. We compare the performance gain between the plain AR

model and full ECAR-Net equipped with the EC module to verify its efficiency. As shown in

Tables 9 and 10, the model with the EC module can obtain 1.6% and 1.8% BD-rate reduction,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 33. Publication date: January 2023.



33:18 Y. Hu et al.

Table 11. Ratios of CUs that Choose VRF for

Inter Prediction under Different QPs

Class 22 27 32 37

Class A 52.5% 53.5% 54.4% 54.7%

Class B 36.7% 34.8% 39.5% 41.2%

Class C 31.5% 33.7% 38.3% 43.1%

Class D 47.6% 53.5% 58.3% 59.4%

All Sequences 41.7% 43.2% 47.1% 49.1%

Fig. 9. Visualization of the CU Prediction Mode. Red indicates CUs that choose our VRF as reference. Top:

3rd frame of RaceHorses. Bottom: 12th frame of BQSquare. Left: QP is 22. Right: QP is 32.

respectively. Especially on Class E under the LDB configuration, the proposed module obtains

up to 3.5% BD-rate reduction.

4.5.2 Verification of the Long-term Dynamics Injection. For the purpose of the verification of

our model to capture long-term dynamics, we reset the long-term dynamics to zero before each

prediction process. In this way, the perception of the long-term motion is screened and only short-

term temporal information is used to the prediction process. As shown in Tables 9 and 10, the

model with the injection of the long-term dynamics can obtain 0.3% and 1.2% BD-rate reduction,

respectively.

4.6 Visualization of the VRF Selection Ratio

We further calculate the ratio of the CUs that choose the VRF generated by ECAR-Net for inter

prediction. As Table 11 shows, a considerable number of CUs adopt the generated VRF for inter

prediction. Figure 9 presents visual results of the prediction mode result of the Coding Unit (CU)

under different QPs. Red indicates that the CU chooses our generated VRF as the reference frame

while Black indicates that the CU chooses existing reference frames to perform inter prediction.

Blue indicates that the CU is coded under the intra prediction mode. It can be observed that our

VRFs are chosen in large numbers, especially in the regions with motions and object edges, while
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Fig. 10. Visualization results of the EC process under the RA configuration. The raw AR result Ĩt suffers from

visual artifacts. The aligned anchor frame Iw plays the role as a reference to obtain the EC result Ît , which

is of better quality compared with Ĩt .

Table 12. Comparisons of Different Anchor Frame

Selection Strategies

Sequence AnchorC AnchorK AnchorT

BasketballPass –5.3% –7.5% –8.8%

BQSquare –1.1% –12.3% –15.9%

BlowingBubbles –2.9% –6.7% –7.6%

RaceHorses –2.6% –4.4% –5.6%

All –3.0% –7.7% –9.5%

existing reference frames are mainly selected in the background, which proves that our VRF is

preferred to deal with the regions with complex motion patterns.

4.7 Visualization of the Error Correction Module

Figure 10 visualizes the efficiency of the EC Module under the RA configuration. The output of

the AR stage Ĩt suffers from visual artifacts as shown in Figure 10(a). Then in the Error Estimation

module, the aligned anchor frame Iw works as a reference to calculate the error map, which reveals

the regions with detail loss and visual artifacts. Finally, Ĩt is refined under the guidance of the error

map to obtain the final result Ît with the EC module. It can be observed that Ît is of better quality

with fewer visual artifacts compared with Ĩt .

4.8 Discussion of the Anchor Frame

For the RA configuration, the way to choose the anchor frame is not fixed. We design three different

selection strategies to choose the anchor frame:

— Closest Strategy. The input frame It−k is chosen as the anchor frame. Thus, the anchor

frame is close enough to the current frame. We denote this strategy as AnchorC .

— Key Frame Strategy. The key frame of the current GOP is always chosen as the anchor

frame, this strategy is denoted as AnchorK .

— Two-Candidates Strategy. This strategy is the one we described in Section 3.6, denoted as

AnchorT .

These strategies are tested on the Class D sequence, and the BD-Rate reduction results are shown

in Table 12. It can be observed that the Two-Candidates Strategy achieves the best performance.

For the Closest Strategy, the anchor frame is too close to the current frame and thus brings in lim-

ited long-term temporal information. While under the Key Frame Strategy, the temporal interval

between the anchor frame and the current frame can be too large, especially when the current

frame is too far from the beginning of the current GOP, which results in the anchor frame of a
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Fig. 11. Visual results and PSNR (dB)/SSIM of HEVC anchor and our proposed method.

limited contribution to the prediction process. Based on the discussion above, we finally choose

the Two-Candidates Strategy in our implementation.

4.9 Subjective Comparison with HEVC

Figure 11 shows the comparison of the visual quality of the reconstructed frames generated by

HEVC anchor and our proposed method. These videos are compressed with the QP 37. It can be

observed that the reconstructed frames of our method are quantitatively and qualitatively better.

The contents of moving object are difficult for HEVC anchor to handle, which always results in

blurry results. On the contrary, our method can deal with this situation better with the aid of the

VRFs generated by the ECAR-Net.

5 CONCLUSION

In this article, we propose the ECAR-Net for the inter prediction of video coding. We take the

coding scenarios into consideration and modify the traditional ARMA model to make it more

suitable for the modeling of video sequences in modern codecs. The long-term temporal dynamics

are introduced to the AR process to make use of both correlated reconstructed frames and a long

time-span of temporal redundancy. The regression result is further enhanced with the EC module

under the guidance of the error map to achieve better reference quality. Experimental results show

that our method has obtained significant BD-rate savings on the testing sequences compared with

HEVC and VVC.
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